
Java 8
Lambda Expressions and the

Stream API
Joe DiFebo

What's new in Java 8?

• Lambda Expressions

• Stream API

• The Optional data type

• Security Enhancements

• JavaFX Improvements

• New and Improved Tools

• … and much more!

What are Lambda Expressions?

• A lambda expression is an anonymous function that is typically
passed as a parameter to other functions.

• While Lambda Expressions are new to Java, they have been around
for decades in other languages.
Javascript

function(x){return x * 2} or x => x * 2

Ruby

{|x| x * 2}

Java 8

x -> x * 2

Lambda Expressions in Java 8

• Several existing interfaces have been modified to allow using Lambda
Expressions
• Now marked with @FunctionalInterface annotation

• Functional interfaces have exactly one abstract method

• Examples include Comparator, Runnable, ActionListener

• New interfaces created specifically for lambda expressions and
streams

Sorting a List of Employees

• Goal: Write a method that takes List<Employee> employees
and sorts the list based on the name attribute

Without Java 8

public void sortEmployeesByName(List<Employee> employees) {

employees.sort(new Comparator<Employee>(){

@Override

public int compare(Employee e1, Employee e2) {

return e1.getName().compareTo(e2.getName());

}

});

}

Sorting a List of Employees

• Goal: Write a method that takes List<Employee> employees
and sorts the list based on the name attribute

With Java 8

public void sortEmployeesByName(List<Employee> employees) {

employees.sort((e1, e2) -> e1.getName().compareTo(e2.getName()));

}

Lambda Expression Details

(e1, e2) -> e1.getName().compareTo(e2.getName())

• (e1, e2)are the parameters, both of type Employee
• We can pick whatever names we want, I could choose (x, y) if I wanted to

• Type Inference is used to figure out the type that these should be, so we don't
need to specify that they are of type Employee

• Still strongly typed, will throw compile-time errors for mistakes

• e1.getName().compareTo(e2.getName())is the method
body
• No return statement needed for one-line methods

Method References

• Provides easy-to-read lambda expressions for methods that already
have a name

• Can be used anywhere that a lambda expression can be used

• Refer to a static method using ClassName::methodName

• Refer to an object's methods with objectName::methodName

Sorting a List of Employees

• Goal: Use a method reference to sort a list of employees

With Java 8 Method References

public class LambdaExpressionExample {

/* other methods up here*/

public void sortEmployeesByName(List<Employee> employees) {

employees.sort(LambdaExpressionExample::compareEmployeesByName);

}

private static int compareEmployeesByName(Employee e1,Employee e2) {

return e1.getName().compareTo(e2.getName());

}

}

What is the Stream API?

[A stream is a] sequence of elements supporting sequential and
parallel aggregate operations.

- Stream JavaDoc

• A stream is not a data structure, similar to iterators

• A "sequence of elements" can include
• Collections (List and Set)

• Objects from a database

• Lines from a file (via BufferedReader)

• Arbitrary mathematical sequences like the Fibonacci sequence
• Can be infinite!

Stream API: anyMatch()

• Returns true if any element in the stream matches the given
condition

• Input is a function that has one parameter and returns a boolean
• We can use a lambda expression!

Stream API: anyMatch()

• Goal: Write a method that takes List<Employee> employees
and String name and returns true if any employee in the list has
that name

Without Java 8

public boolean containsName(List<Employee> employees, String name) {

for (Employee employee : employees){

if (employee.getName().equals(name)){

return true;

}

}

return false;

}

Stream API: anyMatch()

• Goal: Write a method that takes List<Employee> employees
and String name and returns true if any employee in the list has
that name

With Java 8

public boolean containsName(List<Employee> employees, String name) {

return employees.stream()

.anyMatch(employee -> employee.getName().equals(name));

}

Stream API: allMatch() and noneMatch()

• Methods work exactly the same as anyMatch()

• allMatch() returns true if all elements in the stream satisfy the
given function

• noneMatch() returns true if no elements in the stream satisfy the
given function

Aside: The Optional Class

• Class Optional<T> defined in java.util

• Useful when a method might not return a value

• Better than returning null since it informs the user that they must
check if the value is present

• Contains methods like isPresent(), get(), and orElse()

Optional: Sample Usage

• Suppose that getName() returns Optional<String>

Sample Usage

Optional<String> name = getName();

if (name.isPresent()){

System.out.println(name.get());

}

else {

System.out.println("No name was found!");

}

Optional: Sample Usage

• Suppose that getName() returns Optional<String>

Provide a default value

Optional<String> name = getName();

System.out.println(name.orElse("No name was found!"));

Throw an exception

Optional<String> name = getName();

System.out.println(name.orElseThrow(() -> new Exception()));

Throw an exception with a method reference

Optional<String> name = getName();

System.out.println(name.orElseThrow(Exception::new));

Optional: Sample Usage

• Suppose that getEmployee() returns Optional<Employee>

Sample Usage

Optional<Employee> employee = getEmployee();

if (employee.isPresent()){

System.out.println(employee.get().getName());

}

else {

System.out.println("No employee was found!");

}

Optional: Sample Usage

• Suppose that getEmployee() returns Optional<Employee>

Better Sample Usage

Optional<Employee> employee = getEmployee();

System.out.println(employee.map(emp -> emp.getName())

.orElse("No employee was found!"));

What just happened?

• employee.map()returns a new Optional of a different type
• emp -> emp.getName() means the new Optional will be of type
String since emp.getName() returns a String

• Now that we have an Optional<String> again, we can use
.orElse("No employee was found!") to provide a default
String value

Stream API: max()

• Returns an Optional containing the maximum element of a stream
• Will return an empty Optional if the stream is empty

• Takes 1 parameter, a Comparator function

• There is also a min() function

• Goal: Write a method that finds the employee with the highest salary
in a list and return an Optional<Employee> of that employee
• Return an empty Optional if the list is empty

Stream API: max()
Without Streams

public Optional<Employee> findHighestPaidEmployee(

List<Employee> employees) {

if (employees.size() == 0){

return Optional.empty();

}

else {

Employee highestEmployee = employees.get(0);

for (Employee employee : employees){

if (employee.getSalary() > highestEmployee.getSalary()){

highestEmployee = employee;

}

}

return Optional.of(highestEmployee);

}

}

Stream API: max()

• Goal: Write a method that finds the employee with the highest salary
in a list and return an Optional<Employee> of that employee
• Return an empty Optional if the list is empty

Without Streams

public Optional<Employee> findHighestPaidEmployee(

List<Employee> employees) {

return employees.stream()

.max((e1, e2) -> Integer.compare(e1.getSalary(), e2.getSalary()));

}

Terminal vs Intermediate Operations

• Terminal operations return a useful value
• anyMatch() returns a boolean

• max() returns an Optional

• Intermediate operations return a new stream as a result
• Does not modify the source of the stream (the underlying list for example)

• Can be chained together into a pipeline to perform several operations

• Use lazy evaluation; no work will be done until a terminal operation is called

• Examples include filter(), map(), sorted(), limit(),
distinct()

Stream API: map() and collect()

• map() creates a new stream by applying a function to each element
of an existing stream

• collect() "combines" elements of a stream in some way
• Usually used for putting elements into a new collection

• Convenience classes can be used via the Collectors class

• i.e. .collect(Collectors.toList())

• Alternatively can specify your own functions for more precise behavior

• This is a terminal operation since it returns a useful object and not a stream

Stream API: map() and collect()

• Goal: Write a method that takes List<Employee> employees
and returns List<String> of the employees' names

Without Java 8

public List<String> extractNames(List<Employee> employees){

List<String> names = new ArrayList<String>(employees.size());

for (Employee employee : employees){

names.add(employee.getName());

}

return names;

}

Stream API: map() and collect()

• Goal: Write a method that takes List<Employee> employees
and returns List<String> of the employees' names

Without Java 8

public List<String> extractNames(List<Employee> employees){

return employees.stream()

.map(emp -> emp.getName())

.collect(Collectors.toList());

}

Stream API: filter() and count()

• filter() creates a new stream by removing some elements from
the original stream
• Takes a function that returns a boolean, just like anyMatch()

• count() simply returns the number of elements in the stream
• Returns a long, just in case the stream is huge!

Stream API: filter() and count()

• Goal: Write a method that takes List<Employee> employees
and returns the number of employees whose office is equal to "Ann
Arbor"

Without Java 8

public long countAnnArbor(List<Employee> employees){

long count = 0;

for (Employee employee : employees){

if (employee.getOffice().equals("Ann Arbor")){

count++;

}

}

return count;

}

Stream API: filter() and count()

• Goal: Write a method that takes List<Employee> employees
and returns the number of employees whose office is equal to "Ann
Arbor"

With Java 8

public long countAnnArbor(List<Employee> employees){

return employees.stream()

.filter(emp -> emp.getOffice().equals("Ann Arbor"))

.count();

}

Stream API: distinct()

• distinct() creates a new stream by removing duplicate elements
from the original stream
• Takes no parameters

• Uses .equals() to check for equality

• Goal: Write a method that takes List<Employee> employees
and returns the number of different offices there are among the
employees
• Hint: Use map() and count() as well

Stream API: distinct()

• Goal: Write a method that takes List<Employee> employees
and returns the number of different offices there are among the
employees

With Java 8

public long countNumberOfOffices(List<Employee> employees){

return employees.stream()

.map(emp -> emp.getOffice())

.distinct()

.count();

}

Stream API: findFirst() and findAny()

• findFirst() returns an Optional containing the first element
in the stream
• Returns an empty Optional if the stream has no elements

• findAny() returns an Optional containing an element in the
stream
• Not guaranteed to be the first element

• Might be faster when processing streams in parallel

• Usually want to perform a filter() first

Stream API: findAny()

• Goal: Write a method that takes List<Employee> employees
and String email and returns an Optional of that employee
• We can assume that each employee has a unique email

With Java 8

public Optional<Employee> findByEmail(

List<Employee> employees, String email) {

return employees.stream()

.filter(emp -> emp.getEmail().equals(email))

.findAny();

}

Stream API: sorted() and limit()

• sorted() creates a new stream by sorting the original stream
• One version takes no parameters, uses natural ordering

• Second version takes a Comparator just like max()

• limit() truncates the stream to be no longer than a given size
• Takes a long as a parameter

• If the stream isn't that long, the entire stream is returned

Stream API: sorted() and limit()

• Goal: Write a method that returns the 10 highest paid employees in
Ann Arbor

With Java 8

public List<Employee> tenHighestPaidAnnArbor(List<Employee> employees){

return employees.stream()

.filter(emp -> emp.getOffice().equals("Ann Arbor"))

.sorted((e1, e2) -> Integer.compare(e2.getSalary(), e1.getSalary()))

.limit(10)

.collect(Collectors.toList());

}

Stream API: mapToInt()

• mapToInt() returns an IntStream, a special type of stream to
deal with int primitives
• Takes a function that maps to an int, e.g. emp -> emp.getSalary()

• Has average() and sum() convenience methods that don't work on
arbitrary objects

• mapToDouble() and mapToLong() also exist for those
primitives

Stream API: mapToInt()

• Goal: Write a method that returns the average employee salary
• Return 0 if the list is empty

With Java 8

public double findAverageSalary(List<Employee> employees){

return employees.stream()

.mapToInt(emp -> emp.getSalary())

.average() // this returns an OptionalDouble!

.orElse(0);

}

Important Notes and Fun Facts

• To preserve correct behavior, two rules must be followed
1. Streams must be non-interfering (they do not modify the stream source)

2. Must be stateless (results should not depend on any state that might
change during execution)

• Streams cannot be reused after a terminal operation is invoked
• Remember, no work is done until a terminal operation is used

• In some cases, streams can be infinite
• Many methods will never return for infinite streams

Recap of Stream Methods

• Intermediate Operations
• map()

• filter()

• distinct()

• sorted()

• limit()

• mapToInt(),
mapToDouble(),

mapToLong()

• Terminal Operations
• anyMatch(), allMatch(),
noneMatch()

• max(), min()

• collect()

• count()

• findAny()

Other Important Methods

• reduce()
• Extremely flexible, can be used to implement several terminal operations

• Rarely needed in practice

• collect() (the other method signature)
• Useful for loading data into arbitrary data structures

• Most use cases are already covered by the Collectors class

Other Important Methods

• toArray()
• Excellent if legacy code expects an array and not a list, use it if you need to

• forEach()
• Also extremely flexible, lets the programmer execute arbitrary code for each

element in a stream

• Very easy to violate stream contract and potentially get unexpected behavior

• Can just write a for loop instead

Parallel Processing

• Many streams implement the .parallel() method

• Automatically enables parallel processing of the stream
• Work is divided between multiple threads

• After threads complete, end result is then merged together

• Can actually be less efficient for small streams with simple operations
• Millions of elements is still "small".

• Can potentially be much faster for very large streams or when the
operations involved are time consuming

Parallel Processing

• As with all parallel processing, side-effects must be carefully
accounted for
• Two threads modifying the same variable at the same time will cause errors

• Side-effects are highly discouraged even for sequential streams

Parallel Processing Gone Wrong

• What is the output of the following code?

100000, 47270, 46942, 65382, or 40942?

Bad Parallel Processing

static int n = 0;

public static void main(String[] args) {

IntStream.range(0, 100000).parallel().forEach(i -> n++);

System.out.println(n);

}

Summary

• Streams can perform useful operations on collections

• Intermediate operations return new streams based on modifying the
elements of the previous stream

• Terminal operations return useful values

• Stream operations can take lambda expressions to shorten code

• Many streams support parallel execution
• Must be extra careful to ensure correct behavior

Thank You!
Questions?

